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Abstract

During high amplitudes of vibration, nonlinearities affect the electroacoustical behavior of electrodynamic transducers

and are responsible for audible distortions. We distinguish two types of nonlinearities: electrical and mechanical. In this

study, attention is paid to the mechanical and geometrical properties of loudspeaker-like structures. The loudspeaker is

viewed as a combination of an annular plate with a circular plate. Nonlinear vibrations of such a structure are investigated,

using the dynamic analog of the Von-Kármán equations. Furthermore, the influence of both material properties and

geometrical parameters is studied. It is shown that nonlinear effects can be substantially reduced by choosing appropriate

material and geometrical parameters.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of an electrodynamic loudspeaker is to transform an electrical signal into sound. Such a
transduction is expected to be linear. However, for high levels of vibrations, nonlinear phenomena appear and
are responsible for audible distortions. The various sources of nonlinearities can be separated into two parts
[1]: ‘‘electrical’’ nonlinearities due to the large displacement of the coil in the permanent magnet, and
‘‘mechanical’’ nonlinearities due to large displacements of the moving parts of the system. The classical model
for electrical and mechanical nonlinearities consists of a lumped parameters model, which holds the
simplifying assumption that the vibration pattern can be reduced to a single rigid-body mode [2]. Previous
experimental studies reported in the literature have shown that mechanical and geometrical properties of the
system can significantly influence the response of the loudspeaker [3–5]. However, only a few number of
proposed models include the influence of material in the electroacoustical transduction. Former studies
propose a lumped model approach [6], a continuous mechanical model [7], or finite elements models [8], all of
which are restricted to the linear domain. In the present paper, the goal is to extend these results by
considering the influence of geometrical nonlinearities. Since the transformation of mechanical vibrations into
sound in air is linear, the present study is limited to the vibratory problem.

The loudspeaker is viewed here as the combination of an annular plate together with a circular plate (see
Fig. 1). We leave the effects of curvature and of more complex geometries (conical shells) for future studies.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a external radius
b radius of the inner part
E Young’s modulus
F force function
h thickness
s ratio of inner and outer diameters
Tp external loads for mode p

uðr; tÞ longitudinal displacement
wðr; tÞ transverse displacement
g ratio of longitudinal rigidities
d ratio of flexural rigidities

� dimensionless nonlinear parameter
mp dimensionless damping for mode p

n Poisson’s ratio
r density
s ratio of densities
Fp pth natural mode for the flexural dis-

placement
Cp pth natural mode for the force function
op dimensionless modal (angular) frequency

for mode p

M bending moment
N membrane forces
Q transverse shear force

Fig. 1. (Left) Geometry of the system under study. (Right) A typical example of studied loading. Both structures A and B have different

material properties and the junction is supposedly lossless.
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Linear and nonlinear vibrations of both annular and circular plates have been widely investigated in
the past (see Refs. [9–13] for linear models and [14–18] for nonlinear models). Analytical solutions
can be obtained for particular cases of boundary conditions. However, the association of an annular
suspension with a central structure has been less documented. As far as we are aware, only the case where
the central structure is rigid has been treated [9,19–24]. In the present study, the dynamic analog of the
Von-Kármán equations is used to include geometrical nonlinearities in the local vibration equations,
taking into account the stretching of the mid-plane of the structure. The influence of material properties
and of geometrical parameters on linear and nonlinear vibrations is expressed in terms of dimensionless
parameters. The solutions of the problem are expanded on the linear modes of the structure which yield
the nonlinear differential equations of the dimensionless problem. The influence of dimensionless terms on
both the modal frequencies and nonlinear parameters is studied. It is shown that, in order to reduce
geometrical nonlinearities, the ratio between the inner and the outer diameters between the suspension and
the central diaphragm must be as small as possible and that material properties for the cone structure be
carefully selected.
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2. Description of the simplified loudspeaker

2.1. Geometry of the problem

The system is composed of a circular plate B attached to an annular structure A. The total radius is denoted
by a and A is clamped at its outer edge (where r ¼ a). The junction between A and B is located at r ¼ b (see
Fig. 1 for more details).

The two structures have different Young’s moduli EA and EB, Poisson’s ratio nA and nB, thickness hA and
hB, density rA and rB, and different damping properties.

2.2. Assumptions

The system is assumed to be invariant by rotation around the axis of revolution z. This assumption results
from the axisymmetric excitation of the loudspeaker. Experimental observations on loudspeakers show that
the asymmetric modes can generally be neglected.

The junction between both plates is supposed to be lossless. Continuity of both the transverse and
longitudinal displacement, and of the forces and of the bending moments is assumed to occur at this junction
(where r ¼ b).

We assume the Von-Kàrmàn theory for vibration of plates. As mentioned by Nayfeh [16,17], this
formulation offers a correction to the linear small deflection theory. Mathematically, the validity of this
approach is restricted to displacements such that w / h2=a, but in fact, it yields good results even for
amplitudes of displacement comparable to the thickness h of the structure [26]. The underlying assumptions of
this model are the following:
�
 The structure is thin: h=a51.

�
 The Kirchhoff–Love assumptions are verified.

�
 Only nonlinear terms of the lowest order are kept in the expression of strains as a function of the

displacement.

�
 The in-plane and rotatory inertia terms are neglected.

In the present study, the reaction of the surrounding fluid on the structure is neglected, thus the excitation
forces are the only external forces.

3. Formulation of the problem

3.1. Local equations

Let wðr; tÞ denote the transverse displacement at point r and time t. The dynamic analog of the
Von-Kàrmàn equations, with addition of damping and external load on the structure B, are written
as [14]

for 0orob:

DBDDwþmB €w ¼ Lðw;F Þ � cB _wþ Tðr; tÞ,

DDF ¼ �
EBhB

2
Lðw;wÞ. ð1Þ

for boroa:

DADDwþmA €w ¼ Lðw;F Þ � cA _w,

DDF ¼ �
EAhA

2
Lðw;wÞ, ð2Þ
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where in the axisymmetric case, we have

Lðu; vÞ ¼ v;rr

u;r

r
þ u;rr

v;r

r
,

D ¼
Eh3

12ð1� n2Þ
: flexural rigidity,

m ¼ rh : surface density,

Tðr; tÞ : external forces exerted on the central structure.

ð%Þ;r and _ð%Þ denote the derivatives with respect to spatial coordinate r and time t. The Laplacian in
cylindrical coordinates is written as

Dð%Þ ¼ ð%Þ;rr þ
1

r
ð%Þ;r.

In Eqs. (1) and (2), the linear approach cancels the force function, which means F ¼ 0. The usual notations for
the moments M and for the transverse forces Q with respect to coordinate r are the following:

M ¼ �D w;rr þ
n
r

w;r

� �
,

Q ¼ �D Dwð Þ;r,

where the membrane forces N with respect to coordinate r in the axisymmetrical case and the longitudinal
displacement u are:

N ¼ F ;rr,
u ¼

1

Eh
ðrF ;rr � nF ;rÞ.

3.2. Boundary conditions

The structure A is clamped at r ¼ a, which means

uða; tÞ ¼ 0,

wða; tÞ ¼ 0,

qw

qr
ða; tÞ ¼ 0. ð3Þ

The condition of continuity for the displacement field at the junction between A and B (in r ¼ b) is written as

wðbþ; tÞ ¼ wðb�; tÞ,

uðbþ; tÞ ¼ uðb�; tÞ,

qw

qr
ðbþ; tÞ ¼

qw

qr
ðb�; tÞ. ð4Þ

The continuity of the moments and the transverse forces yields

Mðbþ; tÞ ¼Mðb�; tÞ,

ðQþNw;rÞðb
þ; tÞ ¼ ðQþNw;rÞðb

�; tÞ. ð5Þ

3.3. Nondimensional form of the equations

Eqs. (1) and (2) are written in nondimensional form with respect to the external structure A:

r ¼ ðaÞr̄; t ¼ a2

ffiffiffiffiffiffiffi
mA

DA

r� �
t̄; w ¼

h2
A

a

� �
w̄,
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F ¼
EAh5

A

a2

� �
F̄ ; c ¼ 2

EAh5
A

a4

ffiffiffiffiffiffiffi
mA

DA

r� �
m̄; T ¼

EAh7
A

a7

� �
T̄ .

For 0oros:

d
s
DDwþ €w ¼

�

s
ðLðw;F Þ � 2smB _wþ TÞ,

DDF ¼ �
g
2

Lðw;wÞ. ð6Þ

For soro1:

DDwþ €w ¼ �ðLðw;F Þ � 2mA _wÞ,

DDF ¼ �
1

2
Lðw;wÞ, ð7Þ

where the useful dimensionless variables for our problem are:

s ¼
rBhB

rAhA

,

d ¼
EBh3

B

EAh3
A

1� n2A
1� n2B

; s ¼
b

a
,

g ¼
EBhB

EAhA

; � ¼ 12ð1� n2AÞ
h2

A

a2
. ð8Þ

The parameter s represents the density ratio between both structures. The parameters d and g denote the
flexural rigidity and the longitudinal rigidity ratio between both structures, respectively. In Eqs. (6) and (7), it
appears that d and s are related to the linear system, while g has an influence on the force function F only. The
relative magnitude of the nonlinear terms are related to the value of � and, finally, s represents the geometrical
aspect ratio of the structure.

The dimensionless boundary conditions for the problem become

uð1; tÞ ¼ 0; wð1; tÞ ¼ 0;
qw

qr
ð1; tÞ ¼ 0,

wðsþ; tÞ ¼ wðs�; tÞ; uðsþ; tÞ ¼ guðs�; tÞ;
qw

qr
ðsþ; tÞ ¼

qw

qr
ðs�; tÞ,

Mðsþ; tÞ ¼ dMðs�; tÞ; ðQþNw;rÞðs
þ; tÞ ¼ dðQþNw;rÞðs

�; tÞ. ð9Þ

The last boundary condition contains a condition for the displacement w and for the force function F. In the
linear range, the force function tends to zero and the condition can be linearized. In the general case, this
condition correlates transverse and longitudinal displacements. The order of magnitude of the two terms Q
and Nw;r are evaluated by using the dimensionless equations:

ðQþNw;rÞðs
þ; tÞ ¼ dðQþNw;rÞðs

�; tÞ

and

w;rrr �
w;rr

r
þ

w;r

r2
ð1þ �r2F ;rrÞ

� �
ðsþ; tÞ ¼ d w;rrr �

w;rr

r
þ

w;r

r2
1þ �r2F ;rr

� �� �
ðs�; tÞ. (10)

Considering that �51, the term �r2F ;rr

� �
can be neglected with respect to unity. Eq. (10) can then be linearized

and reduced to

Qðsþ; tÞ ¼ dQðs�; tÞ. (11)
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In summary, the problem takes the following dimensionless form for r 2 ½0 : 1�

d
s
ðrÞDDwþ €w ¼ �

1

sðrÞ
Lðw;F Þ � 2sðrÞmðrÞ _wþ Tðr; tÞ

1

sðrÞ

� �
,

DDF ¼ �
gðrÞ
2

Lðw;wÞ. ð12Þ

where
0oros
 soro1
sðrÞ
 s
 1

dðrÞ
 d
 1

gðrÞ
 g
 1

mðrÞ
 mB
 mA
and the boundary conditions are:

uð1; tÞ ¼ 0; wð1; tÞ ¼ 0;
qw

qr
ð1; tÞ ¼ 0,

uðsþ; tÞ ¼ guðs�; tÞ; wðsþ; tÞ ¼ wðs�; tÞ;
qw

qr
ðsþ; tÞ ¼

qw

qr
ðs�; tÞ,

Mðsþ; tÞ ¼ dMðs�; tÞ; Qðsþ; tÞ ¼ dQðs�; tÞ. ð13Þ

Eq. (12) is analogous to the plate theory when s ¼ d ¼ g ¼ 1 and mA ¼ mB (in this limiting case, both
structures have the same material properties). To solve this nonlinear PDE, the solutions are then expanded to
the linear modes of the structures.

4. Modal expansion

4.1. Transverse displacement

The transverse displacement of the structure is expanded onto the linear modes as follows:

wðr; tÞ ¼
X1
p¼0

FpðrÞqpðtÞ. (14)

As a consequence of Eq. (14) the nonlinear terms are contained in the temporal part of the solution. The
mathematical properties of the eigenmodes FpðrÞ are found in Appendix A.2. Both the modal shapes Fp and
frequencies op depend on the dimensionless parameter:

L ¼
s
d

� �1=4
This parameter represent the mass/stiffness ratio of the compound system.

4.2. Force function F ðr; tÞ

Again, the force function is expanded onto the linear modes [15]:

F ðr; tÞ ¼
X1
l¼0

ClðrÞZlðtÞ, (15)
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where the functions ClðrÞ are the modal shapes. As a consequence, Eq. (12) yields
for 0oros:

DDF ðr; tÞ ¼
X1
l¼0

DDClðrÞZlðtÞ ¼ �
g
2

X
p

X
q

LðFp;FqÞqpqq (16)

for soro1:

DDF ðr; tÞ ¼
X1
l¼0

DDClðrÞZlðtÞ ¼ �
1

2

X
p

X
q

LðFp;FqÞqpqq, (17)

and the boundary conditions become

Cp;rrrð1Þ þCp;rrð1Þ �Cp;rð1Þ ¼ 0; Cpð1Þ ¼ 0; Cp;rrð1Þ � nSCp;rð1Þ ¼ 0,

½Cp;rrrðs
þÞ þCp;rrðs

þÞ �Cp;rðs
þÞ�s

þ

s� ¼ 0; Cpðs
þÞ ¼ Cpðs

�Þ,

Cp;rrðs
þÞ �

nB

s
Cp;rðs

þÞ ¼ g Cp;rrðs
�Þ �

nB

s
Cp;rðs

�Þ

� �
. ð18Þ

For 0oros, Cp must satisfy

DDCp ¼ gx4pCp, (19)

where for soro1:

DDCp ¼ x4pCp. (20)

The solutions for 0oros are:

CpðrÞ ¼ Q1pJ0ðxpFrÞ þQ2pI0ðxpFrÞ,

and for soro1:

CpðrÞ ¼ Q3pJ0ðxprÞ þQ4pY 0ðxprÞ þQ5pI0ðxprÞ þQ6pK0ðxprÞ,

where (I0, J0, K0 and Y 0) are the standard Bessel functions (see Appendix A.2). The dimensionless parameter
F is defined as

F ¼ g1=4. (21)

Finally, from Eq. (12), we obtain

DDF ¼
X

b

DDCbðrÞZbðtÞ,

¼ g
X

b

x4bCbðrÞZbðtÞ,

¼ �
gðrÞ
2

X
p

X
q

LðFp;FqÞqpðtÞqqðtÞ. ð22Þ

Using the orthogonality property of functions Cp gives

x4bZbðtÞ ¼ �
1

2

X
p

X
q

ZZ
S

LðFp;FqÞCb dSqpðtÞqqðtÞ

and, after normalization of the modal shapes, the force function F is written

F ¼ �
1

2

X
b

X
p

X
q

CbGpqbqpðtÞqqðtÞ, (23)



ARTICLE IN PRESS
N. Quaegebeur, A. Chaigne / Journal of Sound and Vibration 309 (2008) 178–196 185
where

Gpqb ¼

RR
S
gLðFp;FqÞCb dS

x4b
RR

S
C2

b dS
.

4.3. Mechanical equations of the problem

We now introduce the modal expansions of the displacement and force functions into Eq. (12). Using again
the orthogonality properties of the modal shapes, one obtains the following system of nonlinearly coupled
differential equations:

o2
aqa þ €qa ¼ �

X
p

X
q

X
u

Gpqauqpqqqu � 2ma _qa þ Ta

 !
, (24)

where

o2
a ¼

RR
S
d
s ðrÞFaDDFa dSRR

S
F2

a dS
¼

d
s

Z s

0

FaDDFardrþ

Z 1

s

FaDDFardr, (25)

ma ¼

RR
S
mðrÞF2

a dSRR
S
F2

a dS
¼ mB

Z s

0

F2
ardrþ mA

Z 1

s

F2
ardr, (26)

Ta ¼

RR
S

FaT

sðrÞ
dSRR

S
F2

a dS
¼

1

s

Z s

0

FaTrdr, (27)

Gpqau ¼
1

2

X
b

RR
S
gðrÞLðFp;FqÞCb dS

x4b
RR

S
C2

b dS

RR
S

LðFu;CbÞFa

sðrÞ
dSRR

S
F2

a dS
, (28)

¼
1

2x4b

X
b

ZZ
S

gðrÞLðFp;FqÞCb dS

ZZ
S

LðFu;CbÞFa

sðrÞ
dS. (29)

The eigenfrequencies oa are given by the sum of the two terms that illustrate the respective influences on both parts
A and B of the structures. For a loudspeaker, the first eigenfrequency (called the rigid body mode in the
electroacoustical community) must be chosen to be as low as possible, whereas the other eigenfrequencies must be
choosen to be as high as possible in order to extend the bandwidth where the transducer works as a rigid piston.
This ensures, among other things, that the radiation pattern is not affected by the upper modes of the diaphragm.

The damping factor ma for any given mode a depends on both the damping constants of the materials used
in the structure, with a weighting factor from the modal shapes. For a loudspeaker, the damping must be
sufficiently high in order to avoid the presence of resonances that would alter the reproduced sound. In our
simulations, values of mA ¼ 0:8 and mB ¼ 0:2 were chosen, in accordance with typical values measured on
loudspeakers.

4.4. Forcing terms

In a real electrodynamic transducer, the structure is excited by a coil moving in the magnetic field of a
permanent magnet. In what follows, the coil is viewed as a rigid cylindrical shell of width he glued to the
diaphragm at position r ¼ re (see Fig. 1).

The well-known equation that governs electromechanical transduction is

UeðtÞ ¼ REIðtÞ þ LE

dI

dt
þ BlV ðtÞ, (30)
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where UeðtÞ is the input electrical signal, IðtÞ is the intensity of the current in the coil, RE and LE are the
resistance and the self inductance of the coil, and Bl is the force factor. V denotes the velocity of the diaphragm
on the circle where r ¼ re. Electrical nonlinearities are not considered here.

Using the modal expansion, under the assumption that he=re51, we have

V ðtÞ ¼
X

p

FpðreÞ _qpðtÞ.

The equation of motion for the coil is

ME
_V ðtÞ ¼ BlIðtÞ � Tðr; tÞ, (31)

where ME represents the mass of the coil and Tðr; tÞ denotes the external forces on the structure. Using the
results presented in the previous sections, the projection of Tðr; tÞ onto any mode a reads

Ta ¼
1

s

Z s

0

FaTðr; tÞrdr,

¼ �
2a7reheFaðreÞ

EAh7
AsðreÞ

 !
ME

X
p

FpðreÞ €qpðtÞ � Bl IðtÞ

 !
. ð32Þ

This formulation shows that the modal driving force depends on both the inertia of the coil and the driving
current. It is commonly admitted that the inertia of the coil is small so that its corresponding term can be
neglected with respect to the electrical force term Bl IðtÞ. As a consequence, it can be assumed that

Ta ’
2a7reheFaðreÞ

EAh7
AsðreÞ

 !
Bl IðtÞ. (33)

Eq. (33) shows, in particular, that the modal forcing term is proportional to the modal shape at the point of
excitation and to the intensity of the current.

5. Application to loudspeakers

5.1. Limiting cases of the model

In this section, the influence of the material and geometrical properties of the diaphragm on its vibration
pattern is investigated. Let s characterize the geometry and d, g and s characterize the material properties (see
Section 3). We distinguish two limiting cases of interest:
�
 d ¼ 1: This corresponds to the situation where the elastic properties are similar in both parts of the structure.
The same modal shapes are obtained for all values of s and s, but the values of the modal frequencies vary with
the density ratio s. In this case, our results are comparable to existing results in the literature [9,16].

�
 db1: In that case, the structure B is significantly more rigid than the annular structure A. Therefore, the
deformations mostly affect the outer structure A, corresponding to the standard behavior of loudspeakers in
low-frequency range (piston-like case). Numerical results in the linear range can be found in Refs. [9,19].

The modal shapes obtained with our model for the first three modes of vibration, in these two limiting cases
are presented in Table 1. We select the geometrical parameter s ¼ 0:5 and the density ratio s ¼ 1. The
dimensionless damping factors are mA ¼ 0:8 (rubber) and mB ¼ 0:1 (steel).

5.2. Validation of the model

When both structures are identical, the solution reduces to the plate case. Table 2 compares the results obtained
with our model to previous results published by Nayfeh [16]. The results present a comparison between modal
frequencies oa and nonlinear coefficients Gaaaa (see Eq. (24)), exhibiting congruence between the two methods.
Note that in this case, the calculations performed with our model are independent of the geometrical parameter s.
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Table 1

Modal shapes for the first three modes in two limiting cases. For each mode a, the dimensionless eigenfrequency is noted oa with its

corresponding damping factor ma in parentheses. Calculations have been performed for a density ratio s ¼ 1

Table 2

Comparison of the first four eigenfrequencies and nonlinear coefficients obtained using Eqs. (25) and (28) with the results from Nayfeh in

Ref. [16] for a circular plate

Mode a o2
a Simulation o2

a Nayfeh 3 Gaaaa Simulation 3 Gaaaa Nayfeh

1 10.2158 10.2158 162.21 162.22

2 39.7711 39.7710 5552.0 5552.1

3 89.1041 89.1040 34360 34401

4 158.1842 158.1830 122190

N. Quaegebeur, A. Chaigne / Journal of Sound and Vibration 309 (2008) 178–196 187
Other studies on vibration of annular plates with a central rigid mass were performed by Leissa and Cohen
[9,19]. These authors investigated the linear vibrations of such structures for different values of s. A
comparison between the first modal frequency obtained by Leissa and with the present model in the case where
all materials have the same density and a stiffness ratio of d ¼ 106 is presented in Table 3. Once again,
excellent agreement is found, hence validating the present formulation.

5.3. Linear regime

The influence of parameters d and s on the values of the first three eigenfrequencies are presented in
Figs. 2–4. The boundaries for those two parameters are chosen regarding existing material properties [25]
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Table 3

Comparison of the first eigenfrequency o1 obtained using Eq. (25) for d ¼ 106 with results from Leissa [9] in the case of a rigid central

structure with different values of the geometrical parameter s

s 0.1 0.3 0.5 0.7 0.9

o2
1 Simulation 10.43 12.39 17.69 33.98 161.10

o2
1 Leissa 10.37 12.53 17.89 33.99 160.78

The errors between both models are below 1%.

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

δ

ω
1
 /
 ω

1
re

f

Fig. 2. Evolution of the first modal angular frequency o1 with respect to the flexural rigidity ratio between outer and inner structures d for
different values of density ratio s. Black lines represent the case where s ¼ 0:1, dark gray lines for when s ¼ 1 and light gray lines for when

s ¼ 10. The results are normalized by the value o1ref obtained in the limiting case where d ¼ s ¼ 1. The dashed curves (� �) stand for the

case s ¼ 0:9 and the solid curves for the case s ¼ 0:7. For do102, o1 increases with respect to d and for d4103, o1 only varies with s and s

and is independent of the rigidity ratio d. Large values of geometrical parameter s allow to reach higher eigenfrequencies for the first mode.
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when both structures have the same thickness. In the case of loudspeakers, the aim is to reach high
amplitudes of vibration for a given input force. This is the reason why the outer annular structure is
made of a very flexible material (elastomer). Under this consideration, the stiffness ratio d between the
outer and the inner structure can be chosen to be between 1 and 105 and the density ratio s between 0:1
and 10.

Figs. 2–4 represent the evolution of dimensionless eigenfrequencies with respect to stiffness ratio d for 3
different values of density ratio s and 2 different values of geometrical parameter s. All the results are
normalized by the value obtained in the case d ¼ s ¼ 1. For all figures, the dashed curves stand for the case
s ¼ 0:9 and the solid curves for the case s ¼ 0:7; black lines represent the case where s ¼ 0:1, dark gray lines
for when s ¼ 1 and light gray lines for when s ¼ 10.

The interpretation of these results differ for the first mode (Fig. 2). Two trends can be outlined:
�
 for do100, o1 increases with respect to d. This effect is amplified in the case where s ¼ 0:9 (very thin
suspension);
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Fig. 3. Evolution of the second modal angular frequency o2 with respect to the flexural rigidity ratio between outer and inner structures d
for different values of density ratio s. Black lines represent the case where s ¼ 0:1, dark gray lines for when s ¼ 1 and light gray lines for

when s ¼ 10. The results are normalized by the value o2ref obtained in the limiting case where d ¼ s ¼ 1. The dashed curves (� �) stand

for the case s ¼ 0:9 and the solid curves for the case s ¼ 0:7. For d41000, o2 is independent of d and for do100 it can be shown that

isolines of o2 are defined by d / s. Large values of geometrical parameter s increase the value of the second eigenfrequency o2 : for

d41000, o2 ’ 8o2ref for s ¼ 0:9 when o2 ’ 2o2ref for s ¼ 0:7.
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Fig. 4. Evolution of the third modal angular frequency o3 with respect to the flexural rigidity ratio between outer and inner structures d
for different values of density ratio s. Black lines represent the case where s ¼ 0:1, dark gray lines for when s ¼ 1 and light gray lines for

when s ¼ 10. The results are normalized by the value o3ref obtained in the limiting case where d ¼ s ¼ 1. The dashed curves (� �) stand

for the case s ¼ 0:9 and the solid curves for the case s ¼ 0:7. It can be shown that for do100, the isolines of function o3 are defined by

d / s. Large values of geometrical parameter s increase the third eigenfrequency o3: for d41000, o3 ’ 8o3ref for s ¼ 0:9 when o3 ’ 3o3ref

for s ¼ 0:7.
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for d4100, the values of o1 in Fig. 2 are independent of d. This shows that, for high stiffness ratios, only
the mass ratio s and the geometrical ratio s have an influence on the first modal frequency.
For higher modes of vibration, it can be shown (not representable on Figs. 3 and 4) that the isolines of
eigenfrequencies are defined by d / s for do100. That means that under this consideration, only the ratio
mass/stiffness is of interest for predicting the eigenfrequencies of the system.

Returning to the loudspeaker case, it has been previously mentioned that the most favorable situation is
obtained when the first mode is well separated from the other modes. The first modal frequency must be
chosen to be as low as possible, since the electroacoustical transduction is efficient for frequencies above this
mode. In addition, the other vibrational modes should be ideally situated above the audible range (i.e. for
frequencies higher than 20 kHz). Based on the results shown in Figs. 2–4, it can be seen that this configuration
is ideally reached when s ¼ 10 (where the first eigenfrequency few increases) and d4100 (where the other
eigenfrequencies largely increase).

For example, when d ¼ 105 and s ¼ 10 and for a geometrical parameter of s ¼ 0:9, the first modal
frequency is not shifted but higher mode frequencies are shifted by a factor larger than 6.
5.4. Nonlinear behaviour

The nondimensional parameter � fixes the relative amplitude of the nonlinear terms in Eq. (24). For large
amplitudes of vibration, all modes are coupled through the terms Gpqau. However, for standard loudspeakers,
experimental observations [2,4] show that nonlinearities give rise to harmonics in the response of the system
(harmonic distortion). Internal mode coupling, where energy is transferred from one mode to another, has not
been observed in our experiments. Thus, the main nonlinear effect is produced by the term Gaaaaq3

a (which
gives rise to harmonic terms in the nonlinear response of mode a) and not by cross coupling terms Gapqr
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. 5. Evolution of the first nonlinear coefficient G1111 with respect to the flexural rigidity ratio between outer and inner structures d for

ferent values of density ratio s. Black lines represent the case where s ¼ 0:1, dark gray lines for when s ¼ 1 and light gray lines for when

10. The results are normalized by the value G1ref obtained in the limiting case where d ¼ s ¼ 1. The dashed curves (� �) stand for the

e s ¼ 0:9 and the solid curves for the case s ¼ 0:7. The first nonlinear coefficient is independent of the density ratio s and a minimum is

ched for d ¼ 30. The first nonlinear coefficient decreases when the geometrical parameter s increases.
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different values of density ratio s. Black lines represent the case where s ¼ 0:1, dark gray lines for when s ¼ 1 and light gray lines for when

s ¼ 10. The results are normalized by the value G3ref obtained in the limiting case where d ¼ s ¼ 1. The dashed curves (� �) stand for the

case s ¼ 0:9 and the solid curves for the case s ¼ 0:7. A minimum is reached when 10odo100 depending on the geometrical ratio s.
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Fig. 6. Evolution of the second nonlinear coefficient G2222 with respect to the flexural rigidity ratio between outer and inner structures d
for different values of density ratio s. Black lines represent the case where s ¼ 0:1, dark gray lines for when s ¼ 1 and light gray lines for

when s ¼ 10. The results are normalized by the value G2ref obtained in the limiting case where d ¼ s ¼ 1. The dashed curves (� �) stand

for the case s ¼ 0:9 and the solid curves for the case s ¼ 0:7. A minimum is reached when 10odo100 depending on the geometrical ratio s.
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between oscillators a, p, q and r. It is therefore reasonable to study the coefficient Gaaaa only, since it is the
only factor that contains the most pronounced nonlinear effect.

Figs. 5–7 represent the evolution of Gaaaa for the three first modes for different values of parameters d and
s. All results are normalized by the value of G obtained when d ¼ s ¼ 1.

As in the previous discussions on the eigenfrequencies, the first mode of vibration must be treated separately
from the others, because d only influences G1111. On Fig. 5, it appears that the minimum for this nonlinear
coefficient is reached when d ’ 30, which corresponds to nearly a quarter of the value obtained in the ‘‘piston’’
case (db1). For the other modes of vibration, two regimes can be defined and are valid for all modes:
�

Fig

dif

wh
For do100 the nonlinear coefficients depend only on d and the minimum for G is reached for d ’ 30.

�
 For d4100 (piston approximation) the nonlinear coefficients are quite independent of d and only the
density ratio s and the geometrical ratio s have an influence on the considered coefficients.

In the context of loudspeaker design, Figs. 5–7 show domains depending on d and s where the geometrical
nonlinearities are reduced, thus allowing a better reproduction of sound for large amplitudes of the
diaphragm. The condition where s ¼ 10 and d ¼ 30 is an example of a good candidate.

5.5. Influence of the geometrical parameter s

Finally, we investigate the influence of the geometrical parameter s. The material properties are selected so
that nonlinearities are as small as possible: in practice a value of d ¼ 30 should be selected.

The influence of the geometrical parameter s on the two lowest eigenfrequencies o1 and o2, and on the
nonlinear parameters G are presented in Figs. 8 and 9 for 3 different values of s.

These simulations show that the geometrical parameter s has a large influence on both the linear
and nonlinear regime of vibrations, since it affects together the eigenfrequencies and the nonlinear coefficients.
Fig. 10 shows the dependency of G1111 with s, and it can be seen that the nonlinear coefficient is reduced by
a factor 100 between s ¼ 0:1 and 0.9. This means that in the configuration when s ¼ 0:9, the system is
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. 8. Variations of the first angular frequency o1 of the structure versus the geometrical parameter s in the case where d ¼ 30 for

ferent values of density ratios s. The black line represents the case where s ¼ 10�1, the dark gray for when s ¼ 1 and the light gray

en s ¼ 10. Except for low values of s, s has little influence on the first eigenfrequencies.



ARTICLE IN PRESS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

20

40

60

80

100

120

140

160

180

s=b/a

Γ 1
1
1
1

Fig. 10. Variations of the nonlinear coefficient G1111 for the first mode versus s for different values of s in the case where d ¼ 30. The black

line represents the case where s ¼ 10�1, the dark gray for when s ¼ 1 and the light gray when s ¼ 10. Independently of s, the nonlinear
coefficient of the first mode decreases with s. In order to reduce nonlinearities, the ratio of inner and outer diameters s must be chosen to be

as low as possible.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

s=b/a

ω
2

Fig. 9. Variations of the second angular frequency o2 of the structure versus the geometrical parameter s in the case where d ¼ 30 for

different values of density ratios s. The black line represents the case where s ¼ 10�1, the dark gray for when s ¼ 1 and the light gray

when s ¼ 10. Except for low values of s, s has little influence on the first eigenfrequencies.
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almost linear and that high levels of vibration can be reached without distortion. The same tendency is
observed numerically for higher modes of vibration: a minimum for Gaaaa is obtained when s ¼ 0:9. Such
considerations should be of help in the context of loudspeaker design (Fig. 11).
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6. Conclusions

Nonlinear vibrations of an idealized loudspeaker (viewed here as the combination of an annular suspension with
a circular plate) were presented in this paper. The aim of this study was to investigate the role of geometrical and
material parameters (density, flexural rigidity, thickness) in the vibrations of such structures. The leading idea
behind this work was to determine whether appropriate selection of geometry and material could lead to significant
reduction of commonly observed distortion in the reproduction of sound by electrodynamic loudspeakers.

It has been shown that the general formulation of the nonlinear problem is identical in form to the one of a
plate (including cubic nonlinearities), provided that appropriate dimensionless parameters are introduced
which represent the relative magnitudes of geometrical and material properties of both components of the
structure. In the linear range, it has been shown that only the density and flexural rigidities ratios have an
influence on the modal shapes and associated eigenfrequencies. It is also shown that nonlinearities are mostly
related to the longitudinal and flexural rigidities ratio g and d. The application of our general method to the
case of loudspeakers shows the existence of preferential geometrical and material configurations for the
compound structure that reduce nonlinear effects commonly observed in real loudspeakers configurations.

Future developments of the model will include the effects of small curvatures on the central surface,
responsible for an elevation of stiffness constants and for generation of quadratic nonlinearities observed in
our experimental observations of loudspeaker subjected to large amplitude motions.

Appendix A. Modal shapes Fp and frequencies op for the linear problem

A.1. Modal shapes

In this section, the nonlinear terms are neglected in Eq. (12). The force function is set to zero and no loading
is present. The general equations for the compound structure (A+B) reduce to

for 0oros:

d
s

X1
p¼0

ðDDFpðrÞÞqpðtÞ þ
X1
p¼0

FpðrÞ €qpðtÞ ¼
�

s
�2smB

X1
p¼0

_qpðtÞFpðrÞ

 !
(34)
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for soro1: X1
p¼0

ðDDFpðrÞÞqpðtÞ þ
X1
p¼0

FpðrÞ €qpðtÞ ¼ � �2mA

X1
p¼0

_qpðtÞFpðrÞ

 !
. (35)

Considering a harmonic solution such as qpðtÞ / cosðOtÞ, after projecting onto the pth mode, one obtains
for soro1:

DDFpðrÞ þ O2FpðrÞ ¼ ��ð2mAjOFpðrÞÞ (36)

for 0oros:

d
s
DDFpðrÞ þ O2FpðrÞ ¼ ��ð2mBjOFpðrÞÞ. (37)

These equations can be solved with an expansion on the Bessel functions of the first and second kind
for 0oros:

FpðrÞ ¼ P1pJ0ðzrÞ þ P2pY 0ðzrÞ þ P3pI0ðzrÞ þ P4pK0ðzrÞ (38)

for 0oros, the solution needs to be defined for r ¼ 0:

FpðrÞ ¼ P5p
J0ðzLrÞ þ P6pI0ðzLrÞ (39)

with z2 ¼ O and

L ¼
s
d

� �1=4
. (40)

The modal shapes are then normalized using the following condition:ZZ
S

F2
pdS ¼ 1.

A.2. Eigenfrequencies

Using the boundary conditions of our linearized problem, one can reformulate the problem in matricial
form. We introduce

Pp ¼ ðP1p P2p P3p P4p P5p P6pÞ,

Cp ¼

J0ðzÞ Y 0ðzÞ I0ðzÞ K0ðzÞ 0 0

J1ðzÞ Y 1ðzÞ �I1ðzÞ K1ðzÞ 0 0

J0ðzsÞ Y 0ðzsÞ I0ðzsÞ K0ðzsÞ �J0ðzLsÞ �I0ðzLsÞ

J1ðzsÞ Y 1ðzsÞ �I1ðzsÞ K1ðzsÞ �J1ðzLsÞ I1ðzLsÞ

F 1ðzsÞ F2ðzsÞ �F 3ðzsÞ F 4ðzsÞ �dLF 5ðzLsÞ dLF 6ðzLsÞ

J1ðzsÞ Y 1ðzsÞ I1ðzsÞ �K1ðzsÞ �dL3J1ðzLsÞ �dL3I1ðzLsÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
,

where

F 1

F 2

F 3

F 4

F 5

F 6

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

zsJ0 � ð1� n2AÞJ1

zsY 0 � ð1� n2AÞY 1

zsI0 � ð1� n2AÞI1
zsK0 � ð1� n2AÞK1

zLsJ0 � ð1� n2BÞJ1

zLsI0 � ð1� n2BÞI1

0
BBBBBBBBB@

1
CCCCCCCCCA
.
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The boundary conditions can be rewritten in matrix form as

Cp:Pp ¼ 0. (41)

This problem has no vanishing solutions under the condition:

detðCpÞ ¼ 0.

This equation has an infinite number of solutions zp ¼ O4
p and the eigenfrequencies are:

f p ¼
O2

p

2pa2

ffiffiffiffiffiffiffiffiffiffiffi
DA

rAhA

s
. (42)

The modal shapes are then solutions for Eqs. (38) and (39) for z ¼ zp.
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